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We use the method of Phythian & Curtis (1978) to obtain a self-consistent calculation, 
in lowest order of perturbation theory, for the a-coefficient and effective diffusivity of 
a magnetic field in a plasma with Gaussian turbulence. 

1. Introduction 
In  this paper we extend to the case of a magnetic field in a turbulent plasma, the 

ideas of Phythian & Curtis (1978) for calculating the effective diffusivity of a scalar 
field in Gaussian turbulence. Because of the vector character of the magnetic field, 
this problem is inherently more complicated than the scalar field case. There are in 
fact two parameters to be calculated, the effective diffusivity and the a-parameter 
(Steenbeck, Krause & Radler 1966; Roberts & Stix 1971 ; Moffatt 1979). Nevertheless 
the calculation can be given a formulation similar to the scheme of Phythian & Curtis 
(1978). 

However, although the formal structure of the calculation is the same as for the 
scalar field case, the physical significance of the self-consistent parameters must be 
established with some care. 

2. Perturbation series for the effective Green function 

distribution u(x ,  t )  is 
The equation governing the evolution of a magnetic field in a plasma with velocity 

(2.1) 
a 
at 
- B = V  A (U A B)-q0V A (V A B),  

where qo is the molecular diffusivity of the plasma. We shall assume that the plasma 
is incompressible and that the turbulence is homogeneous, isotropic and subject to 
Gaussian statistics. 

Following Phythian & Curtis (1978), we anticipate the existence of the quantities 
we wish to calculate, namely an effective diffusivity q and an a-parameter, and 
rewrite (2.1) in the form 

a 
at 
- B =  aV A B-qV A (V A B)+V A (u A B) 

- (p2+p4+ . . . )  V A (v A B ) + ( y , + y , +  ...) V A B, (2.2) 
where 

y -qo  = - ( r U z + / % + . . . ) r  (2.3) 

01 = - ( ( ~ 2 + ( ~ 4 + - . - ) .  (2.4) 



338 I .  T .  Drummond 

Here ,uzn and yzn are quantities 0((utzn) ,  Finally we use the fact that  V .  B = 0 to 
obtain from (2.2) 

a 
at 
- B - a V  A B - q V 2 B = V  A (U A B)- ( ,u~+  ...) V A (V A B ) + ( y z +  ...) V A B. 

(2 .5)  
Let the Green function (or the magnetic propagator) for the above equation be 
G,,(x, t I x’, t ’ ) .  It satisfies 

0 ( t  < t‘f, i 6,6(x-x’) ( t  = t ’ ) ,  
C r i j ( X ,  t 1 x’, t ’ )  = 

and for t > t’ obeys 

[ ( ‘ - ~ ~ 2 ) ~ ~ , - a ~ ~ ~ ~ a ~  1 ~ , , ( x , t l x ’ , t ’ )  

= [~irnr1(arnUr-((1~~+...)arnar)+(~z+...)~’imllQli(x,tIx’,t’) , (2.7) 

Kirnrl = &irnn&nrl. (2.8) 

where 

To solve ( 2 . 7 )  we introduce Gaj”), which coincides with Q,, for t < t ’ ,  and, for t > t ’ ,  
obeys 

- -7V2 Bil-aeirnlarn Gi ; ) (x -x ’ , t - t ’ )  = 0 .  (2.9) K t  1 1 
We then find 

G,j(x, t I x‘, t ’ )  = Gi;’ (X - x’, t - t ‘ )  + d3x” dt” 4 9 ’  (X - x”, t - t “ )  s 
x [ K ~ ~ ~ ~ .  (a; u,(x/’, t ” )  - (pz + . . .) a; a: 
+ (y2  + . ..) elrnl, a;] Gll j (x”,  t” 1 x’, t ’ ) .  (2.10) 

From this equation we can develop a perturbation series for G, in powers of the 
velocity field. On averaging the series over the ensemble of velocity fields we obtain 
a corresponding series for the effective magnetic propagator (EMP) defined by 

3t j (x -X ’ , t - t ’ )  = (G i j (x , t lx ’ , t ’ ) ) .  (2.11) 

To O ( ( U ) ~ )  this series is 

%&-x ’ , t - t ’ )  

= Gay’ ( X  - X’ , t - t’ ) 

+ d3~”dt”G$l)’(~-~’’ ,  t-t”) [ -pz K1,,1, i 3 & i 3 : + ~ ~ & l ~ l ,  a;] G f 9 ] ( x ” - ~ ‘ , t ” - t ’ )  

+ d3x” dt” d3x”‘ dt“‘KlrnTp Kp,m,r,l,  G$’(x - x”, t - t ” )  

71’j x a; a;, (u,(x”, t ” )  u,, (x’”, t ” ) )  G$&, (x” - x’”, t” - t’”) C(O) (x”’ - X’ , t”’ - 6’). 

s 
s 

(2.12) 

It is possible to associate these and the higher-order terms in the expansion with 
certain diagrams. However, it is easier to explain t>he significance of these diagrams 
in transform space. We discuss this in $3. 
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3. Transform space and perturbation-theory rules 
The homogeneity in space makes it natural to take a Fourier transform in the 

relative spatial variable, while the fact that  certain quantities blow up exponentially 
in the relative time variable makes it natural to  use the Laplace transform in this 
case. 

We define 

Equation (2.9) together with the boundary condition on GijO) implies that  
- 

[(s+?lk2)Siz-i016ipzK,]GtY) ( k , s )  = 8.. 2 2 .  

That is 
(3.2) 

(3.3) 
ki kj 1 @jo)(k,s) = [6,1- ~ ] A ( k 2 . s ) - i t i , k m B ( k 2 , s ) +  __- k2 s+yk2’ 

where 

It turns out that when G$)(k, x) is used in constructing perturbation-theory terms 
the last term in (3.3) yields a vanishing contribution. When we modify GijO) by 
omitting this term is satisfies the useful condition, 

(3.6) ki (Q(k, 8) = k j  Q$‘)(k, s )  = 0. 

The transform of the velocity correlation function is 

&,(k, 8) = d3~e-ik’(x-x’) J y  dt e-s(t-t’)(ui(x, t )  uj(x’, t ’ ) ) .  s (3.7) 

The incompressibility of the flow implies that 

&.(k, s )  = (k2Sij- ki kj) @(k2,  s) + ieiiu k, Y(k2, s). 1 3 4  
We have 

(3.10) 

where v is the r.m.s. velocity and h is the mean helicity density. Here the s-integration 
runs in an imaginary direction along a contour lying to the right of the singularities 
of @ or Y in the s-plane. 

The rules for writing down perturbation-theory contributions to gij(k, s), the 
transform of the EMP, are similar in spirit to  those explained by Phythian & Curtis 
(1978) for the scalar case. Each contribution is associated with a graph. The 
lowest-order graphs are illustrated in figure 1 .  Fourth-order graphs are shown in figure 
2. The rules are as follows. 

Each line in a graph has assigned to it a Fourier and a Laplace variable, k and 
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Q, w 

FIGURE I .  Graphs for lowest-order calculation. 

FIGURE 2. Examples of two-loop graphs. 

s respectively. The sum of all the variables flowing into a vertex is zero. The lines 
and vertices of each graph are associated with factors in the integrand for the 
perturbation-theory term as shown in figure 3. Finally the independent (loop) 
variables k ,  s a:e each integrated with a weight 

(3.11) 

The s-integration contour runs in an imaginary direction along a path disposed 
appropriately relative to  the singularities in the s-plane. We shall see this worked out 
in detail in the lowest-order calculation. 

Again following Phythian & Curtis (1978), we organize the terms in the perturbation 
series in a standard way so that we can write 

(3.12) 

where C ( k ,  s) is a sum over all irreducible bubbles (that is, those graphs that cannot 
be divided into two by cutting one line). To lowest order C(k,  s) is obtained from the 
graphs in figure 1 after the external propagator factors G(O)(k, s) have been removed. 

Zi j (k ,  s )  = Clr)(k, s) +Zicjb)(k, s ) ,  (3.13) 

- 

gij(k, 8) = G$) ( k ,  S )  +a{!' (k ,  8) ( k ,  8) glj(k, s ) ,  

We have then 

where 

x Kimrl  K ~ ~ r n , r ~ j  k m  (k- q)rn,, 

C#')(k, s) = -pZ( k2Sij - ki kj) + iy, efmj  12,. 

(3.14) 

(3.15) 

k i C ~ ~ ) ( k , s )  = 0 ;  (3.16) 

We note that 

therefore 

C$)(k ,s )  = (k2S i j -k ,k j )C(k2 ,  8)-icirnjkm D(k2 , s ) .  (3.17) 

The expression for C and D may be obtained from (3.14). We are particularly 
interested in the limit k+O. We find then (see (3.3) and (3.8)) 
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FIQURE 3. Rules for vertices and propagators. 

We can now conveniently discuss the disposition of the w-contour. Assume for the 
sake of argument that the velocity correlation function dies away oc e--wolt-t'l, then 
the rightmost singularity of @(q2, w) and Y(q2, w) will lie at w = -wo.  From (3.4) and 
(3.5) i t  is clear that  the rightmost singularity of A(q2, s- w) and B(q2, s-w) is to the 
left of s - w = $a2. It follows that for 

a2 

2.11 
Res  > - -wo,  (3.20) 

the integrands in (3.18) and (3.19) have a strip of analyticity 

a2 
- w o  -= Rew c Res- - .  

2.11 
(3.21) 

It is in this strip that we place the w-integration contour. 
When formulating the self-consistent equations for a and r,~, it  will be necessary 

to assume that C(0, s) and D(0, s) are analytic in a region including the origin. From 
(3.20) we see that this imposes a consistency requirement that 

a2 
- < wo. 
2.11 

(3.22) 
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4. Self-consistency equations 
Equation (3.12) implies that  

- 

9-’ r j  ( k ,  S )  = G$;)-’(k, S) -C,j(k, s), (4.1 ) 

where the exponent refers to  matrix inversion. That is, to O ( ( U ) ~ ) ,  

g ~ ’ ( k , s )  = ( s + y k 2 ) ~ ~ ~ - i a ~ i i n q j k , - ( k 2 6 i j - k , k j )  ( C ( k 2 , s )  
- p 2 )  + ieimj km(D(ka ,  8)- yz) .  (4.2) 

We see then that if we choose p 2  and y2 so that 

then the terms O(Z) and O(k2)  in @;l(k,s) are correctly given for small s by the 
parameters a and 7 respectively. Provided we are interested in long time and distance 
scales these are also the parameters we expect to be physically significant. 

To O ( ( U ) ~ )  then, the self-consistent equations for a and 7 are 

It is implicit in the above argument that there are no singularities in the s-plane near 
s = 0 to vitiate the assumption of smoothness in this neighbourhood. We therefore 
expect a constraint like (3 .22)  to hold for our solutions of (4.5) and (4.6). 

I n  order to obtain tractable equations we shall again follow Phythian & Curtis and 
assume that the time dependence of the velocity correlation function is given entirely 
by a factor e-Wolt-t’I. I n  that case @ and Y have the forms 

We will assume further that  q5 and ffr have their weight concentrated on a shell q = k, 
(Kraichnan 1970). That is 

#(!I2)  - ffr(qZ) &q-kk,). 

The self-consistent equations become 

1 v2(w ,+7k i )+ah  
- 3 ( w , + 7 k ~ ) 2 - a 2 k ~ ’  

1 h(w, + yk i )  + av2kg 
3 (wo+yk2 , )2 -a2k~  ’ 

7-7 -- 

a = -- 

If we set 
h = xv2k,, 

where I x I d 1,  then the above equations become equivalent to 

v2ki 1-x 
(yk2,+ak,) -yo k! = - 

3 w, + (yki  + ak,) ’ 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 
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X 

FIGURE 4. Variation of the self-consistent parameters 7 and a with helicity. 

v2k2 l + x  
(7ki-ako)-70ki = 2 

3 w,, + (yk: -aka)  ’ 

which may easily be solved for 7 and a.  
When x = 0 and the helicity vanishes these equations reduce to a = 0 and 

0 2  1 
7-70 = 

(4.14) 

(4.15) 

which is just the lowest-order version of the Phythian & Curtis equations for the 
effective diffusivity. When the helicity is maximal (x = 1 )  we find that 

a = - k (  0 7 -70) ,  

V2 1 
= 3 w o + 7 , k ~ + 2 7 k ~ ’  

(4.16) 

(4.17) 

Equation (4.16) corresponds to a result found by Kraichnan ( 1 9 7 6 ~ )  in a different 
calculation. 

I n  order to  make a simple comparison we consider the case of high PBclet number 
and set ?lo = 0, wo = k, = 1,  v 2  = 3. Then for x = 0 we find 7 = 0.61, a = 0, while for 
x = 1 we have 7 = 0.5, a = -0.5. I n  the magnetic case, then, the presence of helicity 
in the turbulence has its expected strong effect on the a-coefficient together with a 
small negative effect of the order of 20 % on the effective diffusivity. This is in contrast 
with the scalar-field case, where the effect of helicity is necessarily of higher order 
than the level of approximation considered here (Drummond 1982). A graph showing 
the continuous variation of and a with x is given in figure 4. Clearly the behaviour 
is completely smooth. There is no sign of the dramatic reduction in the effective 
diffusivity encountered by Kraichnan (1976 b )  in his numerical simulation of magnetic 
diffusion. Kraichnan’s results were particularly marked for frozen turbulence, which 
corresponds to wo = 0. Our results remain smooth in this limit. However, it  may well 
be the case that a higher-order calculation will reveal new effects. 
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5. Conclusions 
It is important to consider carefully the physical significance of the parameters we 

have calculated. Ideally we would like to have a complete parallel with the scalar-field 
case, where for large times the field on a sufficiently large spatial scale does obey an 
effective diffusion equation. The reason for this is that in the plane of the Laplace- 
transform variable the dominant singularity is a pole at s = -qk2 ,  where q is the 
effective diffusivity. The important region in transform space controlling the 
asymptotic behaviour is therefore s - k2 - 0. This is just what happens in the 
magnetic case also when the helicity vanishes and a = 0. 

When helicity is present and a =+= 0 the situation is changed. From (4.2)-(4.4) i t  
is obvious that a and q are chosen so that 

q;l(k,s)  = ( s+yk2)St i j - iaEimjk ,+O(sk ,  k3, ...). (5.1) 

s - la1 k-vk2. (5 .2)  

If we neglect the corrections then the dominant pole of gtij lies at 

This should be most nearly correct for k < k,, the scale of the turbulence. However, 
the behaviour a t  large times is dominated by the rightmost pole in the s-plane, which 
is located a t  

(5.3) 
a2 s = -  
417 ’ 

when k has the value 

(5.4) 

It follows that 59tj is dominated a t  large times by a term of the form 

9ij - Hij(x-x’ ,  t - t ’ )  exp {a2(t - t’)/417}, (5 .5)  

where Hij is relatively slowly varying in time and has spatial oscillatory structure 
corresponding to wavenumber k,. 

However, this structure is only an acceptable consequence of the approximation 
if k, 6 k,. In  fact this condition is violated for maximal helicity, when, according to 
our calculations, 1.1 = qk,, so that k, = Bk,. It must be concluded therefore that the 
simple approximation to the propagator will only work uniformly in time and space 
either when la1 and therefore the helicity are well below their maximum values, or 
when the initial field distribution rigorously excludes large wavenumbers. It is true 
that in real turbulence there are mechanisms acting to suppress helicity (Moffatt 
1979). Nevertheless the mathematical background is not as straightforward as the 
scalar-field case. 

A further complication is associated with the fact that  in calculating the small-k 
behaviour of the dominant s-plane pole it is not quite consistent to ignore the terms 
O(sk)  while keeping those O(k2). The magnitude of the correction can be calculated 
in our approximation, but even for maximal helicity does not produce a qualitative 
change in our conclusions. 

There are two ways of viewing the correction. It can be regarded either as a further 
modification of the effective diffusivity or as necessitating an additional term in the 
effective partial differential equation for the magnetic field ; thus 

a aB 
- B =  aV A B+[V A ---yV A (V A B). 
at at 
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The difficulty with this equation is that i t  is rather singular because the operator 

(5.7) 

has a zero eigenvalue for wavenumbers k = 6-l. If were small this would be 
acceptable for small-wavenumber disturbances, but nevertheless i t  is difficult to use 
as part of a renormalized perturbation-theory scheme. 

Although we rejected the detailed predictions of the model a t  large k,  the suggestion 
that for large helicity the magnetic field develops a large-amplitude fine structure on 
the same scale as the turbulence may well have some truth in it.  If so it suggests that 
there may be practical difficulties in making an accurate numerical simulation in this 
case. We note that maximal helicity was indeed the case studied by Kraichnan 
(1976a, b ) ,  so it would clearly be worthwhile attempting a simulation for a range of 
helicities from zero up to  the maximum value. A possible explanation of the 
discrepancy between our results and his may then be revealed. 

Finally we remark that, although we have used a rather artificial structure for the 
velocity correlation function in order to obtain simple analytic results, the theory 
could easily be applied to more-realistic choices. It remains to be shown, however, 
that  the perturbative approach will work well when the k-dependence of the velocity 
spectrum has a power-law decrease rather than the sharp cutoff we have used here. 
I n  that case a different approach may be necessary (Moffatt 1981). 
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